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Abstract

The problem of dislocation patterning and interaction of threading dislocations with immobile dislocation loops and

defects is investigated analytically and computationally based on a statistical analysis and a recently developed model of

discrete stochastic dislocation dynamics (SDD), respectively. The statistical analysis is based on the Friedel–Kocks

model and shows the validity of the Friedel relation for the critical resolved stress while a power law with different stress

dependence is obtained for the average pinning distance on a stable dislocation array. The difference of the stress

dependence is attributed to each model assumptions, such as stable dislocation configurations in athermal system or

meta-stable configurations in thermally activated system. The SDD computational study includes thermal and strain

fluctuation, predicting non-trivial fractal instability of the plastic strain. The height difference correlations of the plastic

strain show that the external load causes a multifractality, and enhances the instability at higher order moments.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Configurations of dislocations including entangle-

ments or networks may be classified as loops, non-loops

(threading dislocation), or combinations of them. Many

of the inherent localized obstacles, such as the Frank-

sessile loops or stacking fault tetrahedra, are small dis-

location loops with short-range stress field, typically in a

form of r / r�m with mP 3, while a threading disloca-

tion has a long-range field with 16m < 3. Accordingly,

the dislocation self-energy E, or the effective mass den-

sity of a dislocation loop is finite even though the size of

material is infinite. However, the self-energy of a

threading dislocation is infinite and has a logarithmic

form, i.e., E / lnðR=~rr0Þ where R is some upper bound of

what, and E ! 1 as R ! 1 and ~rr0 is the dislocation

core radius. The qualitative difference between these two
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forms of dislocations reflects changes in material geo-

metry. If the threading dislocations have a non-zero net

Burgers vector through a region of interest then these

dislocations cause material deformation (bending and/or

twisting). Such dislocations are referred to as geometri-

cally necessary dislocations (GNDs). However, disloca-

tion loops that are contained within the same region

involve no shape change (on average) and are referred to

as statistically stored dislocations (SSDs). Although the

net shape of the material remains the same regardless of

the density of the SSDs, the SSDs affect the plastic be-

havior through their interaction with the GNDs.

Dislocations also interact with other types of point

defects and defect clusters. Due to the low activation

energy, vacancies or interstitials are easily formed by

thermal fluctuations. Other sources of energy such as

high-energy beams can also induce increments of pop-

ulation of point obstacles. Moreover, defect clusters

such as micro-voids, precipitates, or small prismatic

dislocation loops can be formed by migration and con-

densation of point defects. Although some types of self-

interstitial atoms clusters (SIAs) or dislocation loops can
ed.
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Fig. 1. Dislocation–obstacle array properties. h, /, t denote the
angle of attack, angle of deviation, and line senses at each ob-

stacle site, respectively.
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migrate by thermal activation, many of these defects are

sessile or nearly sessile and act as local barriers against

glissile dislocations. It is believed that these defects are

responsible for the micro-yield in the initial stage of

deformation since glissile dislocations are more likely to

encounter these defects than forest dislocations.

Other important types of defect clusters are stacking

fault tetrahedra (SFTs) and Frank sessile loops (FSLs).

These types of defects can be modeled as immobile

dislocation loops and are commonly found in FCC

metals with low stacking fault energy. Perfect disloca-

tion loops (as opposed to FSLs) also form in materials

with high stacking fault energy. In some irradiated BCC

metals, both mobile perfect edge loops and sessile loops

are observed. As shown in the following sections, vari-

ous precipitates in alloys can also be represented as

combination of dislocation loops and thus can be trea-

ted within the same framework. In this work, the in-

teraction between small dislocation loops/defects and

threading dislocations is investigated, focusing mainly

on micro-yield or easy glide in the initial deformation

stage. In the next section, the critical resolved shear

stress (CRSS) sc in athermal glide is derived and Friedel

relations are reconsidered. In Section 3, the effects of

thermal fluctuation on dislocation motion among sessile

dislocation loops and its peculiar behavior are described.

In Section 4 we discuss the result of this work and its

implication to continuum models with higher order

strain gradients.
2. Statistical properties of dislocation segment arrays

Considerable research has been devoted to determine

the CRSS for dislocations interacting with localized

obstacles, corresponding to different types of defects.

For example, in irradiated copper high defect cluster

density of the order of �1022/m3 the average spacing L0

between the clusters is about 45 nm and the average

cluster size r0 a few nm (in many cases r0 � L0). In a

simplified model [1] for easy glide, identical point-like

obstacles with strength Fc are randomly distributed on a

glide plane, and a glissile dislocation with constant line

tension C interacts with the pinning obstacles. Under a

resolved shear stress, the mechanical stability of a

bowing dislocation–obstacle configuration is maintained

until the dislocation force 2C sinðh=2Þ exceeds a critical

force Fc (¼ 2C sinðhc=2Þ) (see Fig. 1 for the angle of at-

tack h). The expression for the CRSS is given by the so-

called Friedel relation [1] as

sc ¼ aðFc=2CÞ3=2so ð1aÞ

and the average dislocation segment length between the

neighboring pinning obstacles is given as
hl0i ¼ a0L0ðso=sÞ1=3 ðs6 scÞ; ð1bÞ

where a and a0 are numerical constants of order of unity,

and so is the Orowan stress defined here with the mag-

nitude of Burgers vector b as so � 2C=bL0. Therefore, a

dispersion hardening law follows sc / L�1
0 which is dif-

ferent from other obstacle related flow rules such as the

Taylor–Mott type forest hardening law sc / L�1=2
d or the

Hall–Petch relation for polycrystalline materials

sc / L�1=2
g , where Ld and Lg are the average dislocation

spacing and grain size, respectively. Eq. (1) is derived for

a simple equidistant two-segment configuration, which is

used as a typical dislocation–obstacle configuration. The

same functional forms have also been derived by other

researchers using statistical approaches [2–6]. Although

some computational analyses [7] confirmed Eq. (1b) at

finite temperatures, a different power law has been found

at zero temperature in the present study. Next we derive

the statistical properties of dislocation–obstacle arrays.

2.1. Derivation of the CRSS for the same kind of localized

sessile loops

We follow the notations and assumptions made by

Hanson and Morris [2,3] and Labusch [5] for dislocation

segment arrays that form on a glide plane. For sim-

plicity, we normalize the segment length l (between

successive obstacles), stress r, and dislocation force f by

2C, so, and L0, respectively, and re-write Eqs. (1) as

rc ¼ f 3=2
c ; ð2aÞ
hli ¼ r�1=3 ðr6 rcÞ: ð2bÞ

With this normalization, obstacles are now distributed

randomly with average concentration of unity, and

hence, the glide area element dA represents the proba-

bility of finding dA obstacles. Stable dislocation segment

arrays are constructed by the circle-rolling method: the

circle with dimensionless radius of curvature R (¼ 1=2r)
is rotated around each obstacle at h6 hc until the next

obstacle is found, otherwise the search process is re-

peated starting from the previous obstacle. The search
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process continues until the array of designated size is

constructed. One of the quantity to characterize the

constructed segment array is the deviation angle / or

total deviation angle w ð¼
P

i /iÞ. When the mean value

h/i is not zero, the search process should stop after the

segment arrays form loops of size of � jp=h/ij while it

remains macroscopically straight without the need for

termination of array construction.

By inspecting the geometry associated with the search

algorithm, the area element is expressed as dA ¼ ldld/,
and the distribution function g0ð/Þ within the search

area as

g0ð/Þd/ ¼
Z

ldl
� �

d/ is

g0ð/Þd/ � 2R2 � fsin2½ðhc � /Þ=2�½uð/Þ � uð/� hcÞ�

þ fsin2½ðhc � /Þ=2� � sin2ð/=2Þg

� ½uð/� hc þ pÞ � uð/Þ� þ cos2ð/=2Þ

� ½uð/þ pÞ � uð/� hc þ pÞ�gd/; ð3Þ

where uðxÞ is the step function i.e. uðxP 0Þ ¼ 1 and

uðx < 0Þ ¼ 0. For connection of the kth segment be-

tween the kth and k þ 1th obstacles, the probability pðkÞ
of finding k þ 1th obstacle at a position is given as

pðkÞ ¼ g0ð/kÞd/ ¼ g0ðwðkþ1Þ � wðkÞÞdw: ð4aÞ

To assign the probability of a position of the kth ob-

stacle within the search area, the area is divided into M
area elements. Then the probability for kth obstacle in

the mth area element (m ¼ 1; 2; . . . ;M) is pðkÞ ¼
g0ð/ðkÞmÞd/ where /ðkÞm ¼ �pþ ðm=MÞðpþ hcÞ. Since

there are M possible positions for each connection, there

are kM possible positions for the total deviation angle

wðkÞ for kth obstacle (after k segment connections). In-

dexing the corresponding position for wðkÞ with n
(n ¼ 1; 2; . . . ; kM), the probability in Eq. (4a) is given in

terms of new indices as m and n

pm ¼ g0ð/ðkÞmÞd/ ¼ g0ðwðkþ1Þnþm � wðkÞnÞdw; ð4bÞ

where wðkÞn ¼ �kpþ ðn=MÞðpþ hcÞ. This pm gives a

transitional probability, which depends on the initial

position of the kth obstacle and the final position of the

k þ 1th obstacle. Similarly, the total transition proba-

bility for the N th segment arrays depends on the differ-

ence of the positional indices for the first obstacle and

the Nth obstacle. When the difference of the indices is q,
it is expressed as [8]

pðN ; qÞ ¼ T N
qþ1;1; ð5aÞ
where T is a NM � NM cyclic matrix given as

T ¼
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:

By determining the eigenvalues of T as shown in Ap-

pendix A, Eq. (5a) is rewritten in terms of pm as

pðN ; qÞ ¼
XNM�1

n¼0

f ðe2in=NMÞNe�2inq=NM=NM ; ð5bÞ

where f ðxÞ ¼
PM�1

m¼0 pmx
m.

Replacing the summation in Eq. (5b) with integration

in the limit of large M , and discrete variable wn (or /m)

for continuous wð/Þ, we obtain P for arbitrary (finite)

array size N as

P ðN ;wÞ ¼ �iR2N
XðN�1Þ=2

p;q¼0

ð�1ÞðN�1Þ=2þp
NCpNCq

� fK½w� ðN � pÞhc þ qp�
� K½w� phc þ ðN � qÞp�
þ K½w� ðN � pÞhc þ ðN � qÞp�
� K½w� phc þ qp�g ð6aÞ

for odd N , and

P ðN ;wÞ ¼ R2N
XN=2�1

p;q¼0

ð�1ÞN=2þp
NCpNCq

� fK½w� ðN � pÞhc þ qp�
þ K½w� phc þ ðN � qÞp�
þ K½w� ðN � pÞhc þ ðN � qÞp�
þ K½w� phc þ qp�g þ NCN=2NCpð�1ÞN=2þp

� K w
hn

� ðN � pÞhc þ N
p
2

i
þ K w

h
� phc þ N

p
2

io
þ NCN=2NCq K w

��
� N

hc
2
þ qp

�

þ K w

�
� N

hc
2
þ ðN � qÞp

��

þ ðNCN=2Þ2K w

�
� N

hc � p
2

�
ð6bÞ



Table 1

The dependence of size and obstacle strength on the ratio rcN=rc

N hc ¼ 0:005 hc ¼ 0:01 hc ¼ 0:02 hc ¼ 0:05 hc ¼ 0:1 hc ¼ 0:2 hc ¼ 0:4 hc ¼ 0:8

1 11.9224 8.4304 5.9611 3.7698 2.6648 1.8820 1.3241 0.9176

5 1.5158 1.4142 1.3195 1.2038 1.1227 1.0458 0.9690 0.8792

11 1.1867 1.1499 1.1142 1.0686 1.0350 1.0011 0.9630 0.9060

21 1.0854 1.0677 1.0502 1.0274 1.0101 0.9917 0.9683 0.9240

51 1.0172 1.0129 1.0085 1.0027 0.9980 0.9919 0.9802 0.9463

101 1.0097 1.0070 1.0043 1.0007 0.9976 0.9931 0.9830 0.9504

201 1.0049 1.0034 1.0018 0.9997 0.9977 0.9944 0.9854 0.9538
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for even N where

KðwÞ ¼ sgnðwÞ � ½2iNCð3NÞ��1w3N�1

� 1F2 N ;
3N
2

�
þ 1

2
;
3N
2

;
�w2

4

�
:

1

When the mean deviation angle is not zero

h/i ¼ w=N 6¼ 0, loops are formed and Eq. (6) is valid up

to N � jp=h/i otherwise P ðN ;wÞ ¼ 0. For (macroscop-

ically) straight dislocation arrays, Eq. (6) can be sim-

plified as

P ðN ;0Þ

¼ 2iR2N
XN
p¼0

X½phc=p�
q¼0

X
q¼0

ð�1ÞðN�1Þ=2þp
NCP NCqK½�phc þ qp�

ð7aÞ
for odd N , and

P ðN ;0Þ

¼2R2N
XN=2

p¼0

X½ðN�pÞhc=p�

q¼0

ð�1ÞN=2þp
NCP

NCqK½�ðN�pÞhcþqp�

ð7bÞ

for even N . Furthermore, for (infinitely) large straight

dislocation arrays, P is obtained using the method of the

steepest descent for evaluating Eq. (5b) as [5]

PLðN ; 0Þ ¼ ZN ; ð8aÞ

where Z denotes the individual partition function, and it

is given for weak obstacles as

Z ¼
Z
A
e�y�

0
/ dA ¼

Z hc

�p
e�y�

0
/gð/Þd/ ¼ R2h3c � 0:7035;

ð8bÞ

where y�0 is a characteristic parameter that satisfies the

straight condition

h/i ¼
Z
A
/e�y�

0
/ dA

Z
A
e�y�

0
/ dA

�
¼ o�y�

0
ln Z ¼ 0 ð8cÞ
1
1F2 is a generalized hypergeometric series: 1F2(a;b,c,wÞ ¼P

k= 0
1{(a)k/[(b)k(c)k]}(w

k/k!).
and numerical solution gives y�0 ¼ �2:821=hc. The CRSS

can be obtained from the condition PðLÞðN ; 0Þ1=N ¼ 1

that demarcates the stable continuation of arrays

(PðLÞðN ; 0ÞP 1) from unstable as (PðLÞðN ; 0Þ ! 0) as N
increases. In the limit of weak obstacle strength (hc ! 0)

and for straight dislocation, Eq. (8b) yields

rc ¼ 1=2R ¼ h3=2c � 0:4194 ð9aÞ

or in real dimension

sc ¼ soh
3=2
c � 0:4194: ð9bÞ

For general size (N ) and obstacle strength (hc), the
deviation of the CRSS from the value in Eq. (9a) can be

obtained as the ratio of the probabilities as rcN=rc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLðN ; 0Þ=P ðN ; 0Þ

p
. Several values of the ratio of the

CRSS for cases of finite array size to the large array size

are given in Table 1.

Corrections to the degeneracy problem and priority

problem associated with the array construction history

yields lower values for the CRSS. The first order cor-

rection to the degeneracy problem [5] results in

sd;1c ¼ soh
3=2
c � 0:3359 ð9cÞ

while the 1st and 20th order corrections to the priority

problem [9] respectively generate

sp;1c ¼ soh
3=2
c � 0:3837; ð9dÞ
sp;20c ¼ soh
3=2
c � 0:3769: ð9eÞ

Comparing these values with Eq. (2a), the original

Friedel’s value with numerical factor of unity is just

several percent off the most-likely value. The validity of

the Friedel relation for the CRSS is, therefore, justified.
2.2. Derivation of the CRSS for different kinds of loops

In general cases, variations of the pinning strength

may be affected by the distribution of loop size, distance

from the glide plane, orientation, etc. In this subsection,

the problem of the mechanical stability of the glissile

threading dislocation is considered for cases of different

kinds of sessile localized loops within the same model
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assumptions. For cases of two different kinds of local-

ized obstacles, various empirical rules are used. For in-

stance, a superposition law sptot ¼ sp1 þ sp2 where p ¼ 1 for

linear addition, and p ¼ 2 for Pythagorean addition rule

[10], and the rules of mixture sptot ¼ yq1s
p
1 þ yq2s

p
2, where yi

is an obstacle concentration, and p ¼ 1 and q ¼ 1=2 [11]

or p ¼ 1 and q ¼ 1 [12]. Utilizing the same procedure

described above, the partition function and the CRSS

are obtained in this study for the case of a macroscop-

ically straight threading dislocation interacting with

small sessile loops of different sizes. Following the same

procedure described by Eqs. (8a)–(8c), the total transi-

tion probability for the M-segment dislocation is ex-

pressed as

PðM ; 0Þ ¼ ZM ¼ ðM !=M1!M2!ÞzM1

1 zM2

2 ð10aÞ

with the individual partition function without correction

factor as

ziðy�Þ ¼ �ðNi=NÞR2½expð�2fiy�Þ � 1�=y�3 ð10bÞ

and the straight condition as

oy� ð1=MÞ lnZ ¼ h/i ¼ w=M ¼ 0: ð10cÞ

Here the obstacles of total number of Nð¼ N1 þ N2Þ are
distributed on the glide plane with the area A while the

stable threading dislocation is pinned by Mð¼ M1 þM2Þ
obstacles, where N1 and N2 are the number of each type

of defect. Accordingly, the length and stress are nor-

malized by L0 ¼
ffiffiffiffiffiffiffiffiffiffi
A=N

p
and so ¼ lb=L0, respectively.

The obstacle numbers Mi are determined as function of

Ni by optimizing the probability P ðM ; 0Þ with respect to

Mi, i.e.,

oMi ln P ¼ 0: ð10dÞ

For the special case of weak obstacles with almost the

same strength i.e. jDh=�hh � 1 where Dh ¼ hc2 � hc1 and
�hh ¼ ðhc1 þ hc2Þ=2, by expanding the partition function

and neglecting the terms of ObðDh=�hhÞ2c, we obtain the

characteristic parameter, the obstacle concentration on

the dislocation, and the CRSS respectively as

y� ¼ �hhy�0ðhc1x1 þ hc2x2Þ=ðh2c1x1 þ h2c2x2Þ; ð11aÞ
15

20

π c
(M
P

xi � Mi=M ¼ yih
3
ci=ðy1h

3
c1 þ y2h

3
c2Þ; ð11bÞ
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0 0.2 0.4 0.6 0.8 1y2(b)

Fig. 2. (a) Snap shot of DD simulation for a threading dislo-

cation interacting with hexagonal loops and square loops. (b)

The CRSS for the mixing case as function of the concentration.

y2 stands for the relative concentration of the hexagonal loops

(case 1) or smaller square loops (case 2).
s2c ¼ s2c1 þ s2c2 rc

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1r2

c1 þ y2r2
c2

q

in dimensionless form

�
; ð11cÞ

where xi and yi stand for obstacle concentration on the

pinned threading dislocation and the glide plane, y�0 the

characteristic parameter already defined above, and sci
the CRSS in cases of the identical obstacles as expressed
in Eq. (9b). Hence, the Pythagorean-type hardening rule

is derived for this mixing case.

Comparison with Eq. (11c) is made using the discrete

dislocation dynamics (DD) [13–16] (DD is described in

Section 3.2). All simulations are performed under the

athermal creep condition for a pure edge dislocation in

the single crystal iron. For different kinds of localized

pinning loops, two cases are investigated: case 1: mixture

of Æ1 0 0æ{1 0 0} square loops and 1/2Æ1 1 1æ{1 1 1} hex-

agonal loops with the edge length of 10b, case 2: mixture

of larger and smaller square loops with the length of 10b

and 7.5b (see Fig. 2(a)). Such dislocation loops are ob-

served in irradiated BCC metals [17]. In both cases, these

loops are randomly arranged on the (1 �11 0) glide plane

with the average interval of 100b as illustrated in Fig.

2(a). Fig. 2(b) shows the DD simulation results for the

CRSS. Analytical results using Eq. (11c) are also shown

using the two simulation data with y1 ¼ 1 and y2 ¼ 0. It

can be deduced from the figures that the hexagonal

loops act as stronger obstacles than the square loops for
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case 1 while obviously larger square loops have stronger

pinning force than the smaller ones in case 2. Although

the scattering of the data indicates the difficulty of good

samplings and precise determination of the CRSS by

simulations, a strong correlation of data with Eq. (11c)

is found in both cases.
2.3. Stress dependence of the average segment length

Analogous to the Eq. (8c) for the straight condition,

the mean segment length without the aforementioned

correction factors can be obtained as

hli ¼
Z
A
le�y�u dA

Z
A
e�y�u dA

�
¼ Rhc � 0:7089 � � � ¼ r�1hc ¼ 0:3544 � � � ð12aÞ

Combining Eqs. (9a) with (12a) yields

hli ¼ ðr2=3
c =rÞ � 0:6326 � � � ð12bÞ

or in real dimension

hl0i ¼ L0ðs2=3c s1=3o =sÞ � 0:6326 � � � ð12cÞ

Hence, the mean segment length is inversely pro-

portional to the resolved shear stress as compared with

the original Friedel relation in Eq. (1b). hl0i ¼ s�1=3. The

numerical constant is about 37% lower than the original

value. When the correction to the priority problem is

taken into consideration, we obtain different power laws

hl0i / s�m where m ¼ 0:7281 and 0.7218, with the 1st

and 20th order corrections, respectively. Hence, stress

dependence of the mean segment length is greater than

the Friedel relation (since s � so), and its dependence

coincides with each other only at the CRSS. This dif-

ference of the stress dependence arises from different

model assumptions. The original Friedel relation in Eq.

(2b) is derived for steady motion of dislocations among

the dislocation forest by thermal activations [1]. This

steady motion can be achieved under a strong geomet-

rical condition that the activated dislocation segments

encounter the next obstacle after sweeping one obstacle

occupying area on average. Then the dislocation seg-

ment overcomes the next obstacle by thermal activation,

and the process continues. On the other hand, Eq. (12c)

is derived for the dislocation–obstacle configurations in

athermal glide. Instead of the geometrical condition,

they satisfy the maximum condition of the configura-

tional entropy (or maximum probability), which denotes

the most likely configuration. And hence, dislocation

segments do not have to encounter the new obstacle nor

dislocation motion is in steady manner even when the

thermal activations are included.

In fact, the strong geometrical condition for the

Friedel relation is satisfied only when the obstacle con-

centration is so high (or applied stress is so low) that
every encountered obstacle is overcome by thermal ac-

tivation, not by mechanical instability. In general, this is

not always true since dislocations achieve a (meta-)

stable configuration after some trial and error phe-

nomenon (skipping obstacles). Near the CRSS, many

obstacles are mechanically bypassed after one activation

event [7]. Therefore, hl0i in Eq. (2b) should be replaced

by the distance between the sites of two successive active

obstacles, rather than dislocation segment length be-

tween neighboring obstacles. Apparently Eq. (10c)

should be applied to the dislocation segment length be-

tween neighboring obstacles in stable configuration.

Although the original Friedel relations or statistical

relations derived above for weak obstacles are applicable

to a wide range of physical problems, care must be taken

for some cases. For instance, when the size of the ef-

fective stress field is comparable to the average obstacle

spacing, which usually act as hard obstacles, the statis-

tics are described by Mott–Orowan statistics. For large

(strong) obstacles, equilibrium configurations are de-

termined by force balance between forward and back-

ward obstacle forces of finite depth. In addition, such

hard obstacles contribute to the hardening through

multiplication of the Orowan loops nucleated at each

obstacle bypass. Furthermore, when kinks on disloca-

tion are distinguishable such as those in screw disloca-

tion in bcc structured metals or intermetallics, the

dislocation–obstacle interaction is qualitatively different

from that in the aforementioned string type dislocation.

Coexistence of these two types of dislocation–obstacle

interactions may provide a dislocation mechanism that

generates peculiar plastic response [18].
3. Patterning in threading dislocation – loop interaction

problems

3.1. General dislocation patterning

As shown above, dislocation statistics and mechani-

cal stability of dislocations are largely controlled by the

localized obstacles at the initial deformation stage. The

problem of dislocation–obstacle interaction shows a

close analogy with fluid percolation through porous

media [19]. Based on the classification of the universal-

ity, Gil Sevillano et al. [19] described that the growth of

threading dislocation shape near the CRSS follows ei-

ther self-affine non-fractal patterns for weak obstacles

such as those considered above, or self-similar fractal

patterns for strong obstacles. The former case corre-

sponds to Friedel statistics consistent with depinning

transition for soft obstacles while the later to Mott–

Orowan statistics consistent with conventional percola-

tion transition for hard obstacles. The same problem

was considered with conservative conditions for the

angle h and the segment length l before and after an
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activation event [20]. In such a model the self-organized

criticality (SOC) behavior is demonstrated for the

spacing l between the activated obstacles, indicating that

all length-scales are involved in the structural evolution.

Plastic deformation can be viewed as percolation

events in which the behavior of plastic strain is charac-

terized by the successive local bursts of dislocations [21];

repeatedly gaining and loosing temporal stable config-

urations. Accounting for the effect of shear bands,

Thomson et al. [21] explained the SOC-type universal

behavior of plastic strain and derived a scaling relation

for the strain decay, i.e., hcðr þ DrÞ=cðrÞi ¼ r�af ðDr=rcÞ
where Dr denotes distance from the spatial point where

the strain initiates to point of interest, f is the scaling

function, and rc is he correlation length. Similar scaling

relations are also observed experimentally in fractal

dislocation cell patterns where misorientation angles’

distribution can be well fitted by a single curve regard-

less of the loading conditions or type of materials [22].

The internal strain field of randomly distributed local

obstacles generates stochastic perturbations to encoun-

tered dislocations, as compared with deterministic forces

such as the applied load. This stochastic stress field also

contributes to the spatial dislocation patterning in the

later stages of deformation. Thus the strain field of local

obstacles adds spatially irregular uncorrelated noise to

the equation of dislocation motion [23]. Using a phe-

nomenological Fokker–Plank equation for the disloca-

tion dynamics, Zaiser [23] explained the emergence of

homogeneous dislocation structures in the deterministic

limit while inhomogeneous structures such as fractal

dislocation cells in the stochastic limit.

3.2. Stochastic dislocation dynamics

In addition to the strain fields of random dislocations

or local obstacles, thermal fluctuations also provide a

source of stochasticity in dislocation dynamics. Some

computational studies for the dislocation pinning-de-

pinning transition by a kinetic Monte-Carlo model also

reveal scaling relations for the dislocation velocity and

the relaxation time at finite temperatures [24]. In the

following, we report spatial–temporal patterning of

threading dislocations under the influence of both ran-

dom obstacle fields and thermal stresses.

Thermal fluctuations arise from dissipation mecha-

nism due to collisions of dislocations with surrounding

particles, such as phonons or electrons. Rapid collisions

and momentum transfers result in random forces on

dislocations. These stochastic collisions, in turn, can be

regarded as time-independent noises of thermal forces

acting on the dislocations. Suppose that the exertion of

thermal forces follows a Gaussian distribution. Then,

thermal fluctuations will most likely result in very small

net forces due to mutual cancellations. However, they

sometimes become large and may cause diffusive dislo-
cation motion or thermal activation events such as

overcoming obstacle barriers. In this study, results for

dislocation motion and patterning are obtained by em-

ploying a simulation model that accounts not only for

deterministic effects but also for stochastic forces; lead-

ing to a model we call �discrete stochastic dislocation

dynamics’ (SDD).

Discrete dislocation dynamics (DD) have been de-

veloped and applied to various deformation problems

during the past decade [13,14,25–27]. The DD method is

an effective computational scheme that can address

plasticity problems at the meso and nano scales. In the

DD algorithm, dislocations are modeled as discontinuity

lines in a continuum, which are then descreteized into

small segments connected by nodes. The dynamics of

these segments and nodes are determined based on

equations of dislocation motion. In the algorithm de-

veloped by Zbib and co-workers, a linear approximation

is used in which the driving forces are evaluated over the

segment length using linear shape functions. The inter-

active forces between the segments are computed based

on the linear theory of elasticity. In addition, drag forces

due to dissipation, applied forces, image forces, and

inertia effects, etc. are calculated, and the dislocation

structure evolves based on a deterministic Newtonian

equation of motion. Moreover, DD simulations involve

dislocation core reactions using, sometimes, local rules

for annihilations or formations of junctions or jogs.

Within the framework of multiscale modeling, these

local rules are established according to information ex-

tracted from atomistic simulations. The end result is a

set of non-linear and coupled equations of motion for

the nodes connecting the segments. (See a recent review

article by Zbib and Diaz de la Rubia [28]).

Although the DD method has been extensively used

by many researchers to investigate various plasticity

problems, almost all current discrete dislocation dy-

namics models are essentially deterministic and based on

athermal models. Hence, they cannot be employed to

simulate thermal activation processes. For example, in

the problems of dislocation–local obstacle interactions,

such as the ones described in the previous section, the

activation enthalpy of local obstacles can be low for

weak obstacles and dislocations can intermittently mi-

grate by thermal activation. However, in deterministic

models such as DD, once the system forms a meta-stable

configuration, say dislocations pinned by obstacles, it

can be trapped in energetic local minima causing un-

physical freeze. To avoid this unphysical trapping of

dislocations, stochastic thermal agitations have been

implemented into the equations of dislocation motion as

random stress pulses [9]. In SDD model, the system in-

cludes externally applied forces due to stress rA, Peach–

Kohler forces among glissile dislocation segments on a

glide plane (rD
ij between ith and jth segments) or defect

segments rS
i;j (such as in SFTs between the ith segment
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and kth SFT), drag force due to electrons (drag coeffi-

cient Be) and phonons (Bph), and random forces (s) are

added in heuristic way to the equation of motion such

that

_rri ¼ vi; i ¼ 1; 2 . . . ;N ;
0.7

0.8

0.9

1

∆G
/∆

G
c

m�
1 _vvi ¼ �

X
electron;phonon

Bvi

þ
X
j6¼1

rD
i;j

 
þ
X
k

rS
i;k þ rA þ s

!
� bi � ni; ð13Þ

where ri is the position vector of the dislocation node i,
vi is its velocity vector, m� is the effective mass density, N
is the total number of nodes,

P
B is the total drag co-

efficient, and ni is the dislocation line sense. Then, based

on the assumption of the Gaussian process, the thermal

stress pulse has zero mean and no correlation [29,30]

between the two difference times. This leads to the av-

erage peak height given as [9,31]

sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT

X
B=ðb2DlDtÞ

q
; ð14Þ

where k denotes Boltzman constant, T absolute tem-

perature of the system, b the magnitude of Burgers

vector, Dt time step, and Dl is the dislocation segment

length. Some values of the peak height are shown in

Table 2 for typical combinations of parameters. Here, Dt
is chosen to be 50 fs, roughly the inverse of the Debye

frequency. Although Dl or Dt does not have a fixed

value, such a restriction is imposed so that the system at

the energetic global minima should reach thermal equi-

librium. The validity of these parameters are checked by

comparing the assigned system temperature (T ) with the

kinetic temperature of a dislocation with both ends

fixed, which should coincide on average according to the

equipartition law. We obtained Dt <� 100 fs, while the

choice of Dl is so wide that it should be determined from

the minimum scales of microstructures of interest. In

this study, the size of the local obstacle is assumed to be

in the order of nm and, therefore, Dl is also chosen to be

in the same order. Typical combinations of parameters

with Eq. (13) are shown in Table 2.

With the SDD method, one can treat cross-slip (a

thermally activated process) in a more accurate manner,
Table 2

The stress pulse peak height for various combinations of pa-

rameters, Dt ¼ 50 fs

T (K)
P

B (lPa s) sh (MPa)

(Dl ¼ 5b)
sh (MPa)

(Dl ¼ 10b)

0 2 11.5 8.11

50 5 40.6 28.7

100 10 81.1 57.4

300 30 256 181
since the duration of waiting time and thermal agitations

are naturally included in the stochastic process. Here,

the SDD cross-slip model for fcc is based on the Escaig–

Friedel (EF) mechanism where cross-slip of a screw

dislocation segment may be initiated by an immediate

dissociation and expansion of Shockley partials. This

EF mechanism has been observed to have lower acti-

vation energy than the Shoeck–Seeger mechanism where

the double super kinks are formed on the cross-slip

plane. In the EF mechanism, the activation enthalpy DG
depends on the interval of the Shockley partials (d) and
the resolved shear stress on the initial glide plane (r) (see
the MD simulations of Rasmussen and Jacobsen [32]

and Rao et al. [33]). The constriction interval L also

depends on r. The activation energy for cross-slip is

computed using an empirical formula fitted to on the

MD results of Rao et al. [33]. Fig. 3 depicts the DGðrÞ
for the case of copper where we chose the value of 1.2 eV

for the activation free energy and 0.045 J/m2 for stacking

fault energy. This activation energy for stress assisted

cross-slip is entered as an input data into the SDD code.

Within the SDD code, dislocations are represented as

perfect dislocations while a pair of parallel Shockley

partials are introduced in the case of screw dislocations

only for stress calculation at forward (þd=2) and

backward (�d=2) direction of the original perfect screw.

Then a Monte-Carlo type procedure is used to select

either the initial plane or the cross-slip plane according

to the activation enthalpy. For simplicity, we set the

regime of the barrier with area of L� d and strength of

DG=Ld. The virtual Shockley partials move according to

the Langevin forces in addition to the systematic forces

according to equation (13) until the partials overcome

the barrier and the interval decreases to the core dis-

tance. The implementation of this model captures the

anisotropic response of cross-slip activation process to
0.5

0.6

10-4 10-3 10-210-5

σ/µ

Fig. 3. The normalized activation enthalpy for copper as a

function of the normalized resolved shear stress on the glide

plane. Gc and l denote the activation free energy and the shear

modulus, respectively.
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the loading direction, and consideration of the time

duration (waiting time) during the cross-slip event, which

have been missing in the former DD simulations (more

details will be provided in a forthcoming article).

3.3. Multifractal behavior and patterning

The temporal–spatial behavior of threading disloca-

tions is investigated in this study using the SDD model.

A threading edge dislocation is placed among high
Fig. 4. (a) Plastic strain by single dislocation among stacking fault tetr

external stress is applied. (b) Pair correlation of two signals of plastic

Height correlation of two signals of plastic strain in Fig. 2(a). For cl

relation of two signals of plastic strain under 10 MPa of shear stresses

correlation for the threading dislocation shape (y ¼ yðxÞ on x–y plane
density of SFTs with periodic boundary condition. The

simulation is carried out with or without an applied

external load. The total plastic strain tensor resulting

from the motion of the dislocation segments and aver-

aged over the computational cell is computed in the

SDD model. Fig. 4(a) depicts the signal of plastic shear

strains obtained by SDD simulation for the case with no

applied external load. The fluctuations in the strain-time

signal that can be seen in the figure can be attributed to

both the strain field of the random SFTs and thermal
ahedron (SFTs) in copper. SFT density¼ 5.96· 1022/m3, and no

strain in Fig. 2(a). For clear view, one curve is shown for czx. (c)
ear view, one curve is shown for czx. (d) Height difference cor-

. For clear view, only data for cyz is shown. (e) Height difference

).
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fluctuations. Noting that the strain is a relative quantity,

a small simulation cell yields very high strain rates al-

though the real dislocation velocity is sufficiently low as

compared to the shear-wave velocity. The observed bias

of the plastic strain toward positive values results from

the pinning and attractive effect of the SFTs, which drive

the dislocation towards them. In order to characterize

these signals, we calculate a pair correlation

CpðDt; qÞ ¼ hjcðtÞcðt þ DtÞjqit ð15aÞ
and a height difference correlation,

ChðDt; qÞ ¼ hjcðtÞ � cðt þ DtÞjqit; ð15bÞ
where h it is the time-average.
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The pair correlation Cp and the height difference

correlation Ch are shown in Fig. 4(b) and (c), respec-

tively. Cp at various orders of moments is constant for a

wide range of the time difference Dt between the two

data. Large fluctuation of Cp at larger Dt can be attrib-

uted to the insufficient number of data for averaging.

The tendency of the constant Cp is reminiscent of the

white-noise type thermal stresses hsthermðtÞsthermðtþDtÞi/
dðDtÞ, which is implemented in the SDD scheme. On

the contrary, Fig. 4(c) indicates a power law of the

height difference correlations over different time scales

i.e. ChðDt; qÞ / tqH . Slopes of the curves H in the fig-

ure take values of about 0.8–0.85 as compared

with H ¼ 1=2 for ordinary Brownian motion. Since
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ChðaDt; qÞ ¼ aqHChðDt; qÞ for scale factor a, the data

indicates the persistent of self-affine behavior of the

fractional Brownian dislocation motion[34]. Deviation

from the ordinary Brownian motion arises from the ef-

fect of the strain field of surrounding SFTs and self-

avoiding nature of dislocations.

Using similar setting, results under creep conditions

are obtained by the SDD simulations. The dislocations

are subjected to a shear stress of 10 MPa. During

loading, the dislocation density increases from

�3.5· 1014/m2 to 2.7 · 1015/m2. The result depicted in

Fig. 4(d) shows a qualitatively different behavior of the

height difference correlation from the previous case.

Namely, the exponent H varies significantly according to

the order of moment q. Within this specific range of q, H
is a monotonically decreasing function of q with the

values ranging from �0.25 to 1.2. Therefore, Ch shows a

multifractal behavior with multiple exponents. Since it is

persistent (H > 1=2) at lower q and anti-persistent

(H < 1=2) at higher q, the system instability (larger

fluctuation of time data of plastic strain) grows from

higher order moments, while the deterministic nature

stems from lower order moments. Considering the de-

duction obtained by Zaiser [23], this enhanced instabi-

lity under load can be contribute to various spatial

patterns for long run. Moreover, the self-affinity of the

strain data obtained by the SDD simulations may

emerge as macroscopic instability such as Portevin–Le

Chatelier effect, which in fact shows similar SOC be-

havior [35].

Similar fractal analysis is performed for spatial pat-

terns for the same dislocation-SFT binding configura-

tions. Fig. 4(e) illustrates the height difference

correlation for the shape of a threading dislocation on x–
y plane: ChðDx; qÞ ¼ hjyðxÞ � yðxþ DxÞjqix, together with
random dislocation orientation for references. Although

it requires more complex functional forms for the scaling

function for a wide range of distance along the dislo-

cation (x), simple power relation holds for small Dx,
implying again the SOC type fractal nature of the dis-

location shape.

The formation of dislocation patterns using SDD

simulations is further substantiated by the results shown

in Fig. 5. These results pertain to the relaxation of dis-

location curves that are distributed randomly in the 3D

simulation cell. Fig. 5(a) shows the initial dislocation

configuration, which consists mainly of straight dislo-

cations with an initial density of 3.69 · 1016/m2. The

SDD simulation is performed with no external applied

loads. The dislocations are driven by their mutual in-

teraction towards a meta-stable configuration shown in

Fig. 5(b). Formation of dislocation cells can be deduced

from the figure. This is also shown in the planar views

given in Fig. 5(c) and (d). There are regions with very

low dislocation density surrounded by regions with high

dislocation density where the dislocation seems to be
entangled. It should be pointed out here that cross-slip

seems to play an important role in this case.
4. Summary and concluding remarks

In this paper, we investigated the problem of inter-

action of threading dislocations with immobile localized

dislocation loops interaction. First, we examined the

statistical properties of stable threading dislocation-loop

configurations using Friedel–Kocks model. The ob-

tained CRSS showed same functional forms as the

original Friedel relation, with the deviation within sev-

eral percent. On the other hand, the average dislocation

segment length between the localized pinning loops in-

dicated stress dependence stronger that that predicted by

the Friedel relation. This difference can be explained

based on the model assumptions: those obtained in this

work are for static dislocation configurations in the

athermal system while the Friedel relation is intended

for meta-stable dislocation configurations in the steady

motion. Second, we computationally explored the sto-

chastic dislocation behavior leading to patterning using

a recently developed stochastic dislocation dynamics

code. Time signals of plastic strain showed scaling be-

haviors reminiscent of the self-organized criticality in

their height-difference correlations. The moment de-

pendence of the correlations was enlarged under load,

corresponding to more deterministic and indeterministic

dislocation behaviors in lower and higher order mo-

ments, respectively.

One can deduce form this and other studies that the

discrete dislocation dynamics models are efficient when

dealing with deformation at relatively small scales, say in

the order of tens of micrometers. However, for defor-

mation at larger spatial scales the use of continuum

models becomes more efficient and inevitable. None-

theless, even when developing such continuum models

the DD analysis may provide a direct means for mea-

suring corresponding internal variables (scalar and ten-

sorial quantities). For instant, dislocations (threading

dislocations and loops) in continuum crystal plasticity

formulation can be modeled using non-Riemannian

representation in terms of two second order rank tensors

[36]: the torsion tensor aij (also called the Nye tensor)

and the curvature tensor gij. These measures of geo-

metric distortions can be directly computed from the

plastic deformation stretch tensor c of the continuum

such that aij ¼ �eiklcjk;l and gij ¼ �ðeiklajk;l þ ejklajk;lÞ=2.
In fact these two higher order gradients of the defor-

mation field are the dislocation density tensor and dis-

location flux tensor, respectively [37]. Thus, in the

discrete system they can be computed explicitly for a

given dislocation distribution [28], i.e. for a computa-

tional cell of volume V , containing a number of dislo-

cation segments each with a Burgers vector b, the Nye



Fig. 6. (a) Decomposition of the jog formation (left) into a

threading dislocation and Volterra loops (right). The initial

extended jog formation is obtained by a MD simulation [32].

(b) Decomposition of the dilatation center with change in the

effective radius dr (left) into Volterra loops with Burgers vector

dr (right).
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tensor (or the dislocation density tensor) is given by

a ¼
P

l i
V
bi 	 ni. While in the discrete system one can

compute this tensor at every time step, in the continuum

framework one needs to treat them as internal variables

and establish evolution laws for them. For example, in

order to model the evolution of dislocation structures,

Shizawa and Zbib [38,39] proposed a set of coupled

reaction–diffusion equations for aij and gij which under

certain conditions lead to the formation of cell patterns.

(In passing we note that for small strain, a set of these

equations is known to form the Maxwell–Lorentz

equations, showing analogue to an electromagnetic field

to dislocation strain field.) The influence of these vari-

ables on deformation is directly incorporated in the

hardening rules[40] providing an intrinsic length scale.

Recalling the geometric result diva ¼ 0 [37] which is

interpreted as continuity of dislocation, dislocation

structures can always be decomposed into non-loop

threading dislocations and Volterra dislocation loops,

i.e. Burgers vectors on each dislocation line remains

constant. This can be shown by applying Kirchoff the-

orem for the dislocation-network using analogue to

electromagnetism. Representation by Somigliana dislo-

cations where Burgers vectors varies along lines is re-

dundant. In fact, Somigliana dislocations do not exist as

isolated line defects because of the continuity of dislo-

cations, although they are useful conceptually to con-

sider problems of planer or membrane defects,

twinnings, dislocations in polymers, or cracks. There-

fore, it can be concluded that the first and the second

order gradients of c, a and g are the continuum repre-

sentation of threading dislocations and Volterra loops,

respectively.

Next we comment on the issue of the representative

volume element (RVE) that a continuum model must be

based upon. The question here is what is the �appro-
priate’ RVE over which the state of the material can be

homogenized and macroscopic properties can be prop-

erly defined. But even after homogenization, the geom-

etry of the RVE would depend on both the density of the

threading dislocations that are referred to as geometri-

cally necessary dislocations (GNDs) [41] and the density

of the Volterra loops that are referred to as statistically

stored dislocations (SSDs) since each group of these

dislocations and the manner in which they are distrib-

uted in the cell contributes differently (on average over

the RVE) to the changes in the material geometry. Thus,

homogenous (local) quantities may not be sufficient to

adequately capture the material response. In such cases,

non-local quantities for �ccð¼ ð1=VRVEÞ
R
VRVE

cdV Þ, �aa and �gg
should be used to better denote plastic strains, GNDs,

and SSDs, respectively, at the RVE level, leading to the

use of higher order gradients.

For instant, in cases that the RVE contains many

Volterra loops (or dipoles in a two dimensional model),

the resulting eigenstrain should be represented by mul-
tipole expansions, which accompanies even higher order

gradients of the plastic strain. Any combination of dis-

location loops always forms multipoles with even order

such as dipoles, quadrupoles, octapoles, etc., and, hence

the superposition of r2�cc (or akin terms such as r�ccr�cc),
r4�cc, r8�cc, etc. can be used to specify the state of the

internal strain in the RVE. Moreover, a complete list of

reactions among these constituent dislocations and

loops has to be obtained in order to correctly predict the

dynamical evolution of the structure. Tabulation of all

possible reactions is, however, a difficult task due to an

unmanageably large number of these reactions when

large RVEs are selected.

Only when relatively small RVEs are selected, local

quantities may be replaced for non-local quantities

without introducing higher order gradient terms, and

the number of reactions between threading dislocations

and loops can be manageably small in some cases.

Considering the size of the dislocation core or minimum

observable loops, such RVEs should be several na-

nometers at most. In other cases, the simple represen-

tation with lower order gradients of �cc breaks down due

to difficulties pertinent to physical situations, such as

jogs formed by loop absorptions, or dilatation centers

within the RVE. Fig. 6(a) and (b) illustrate multiple

Volterra loops extracted from a jog and a dilation center

that require higher order gradients.

Finally we note that the DD method is an important

component in the multiscale modeling framework in

which the material behavior can be obtained according

to the spatial and/or time resolutions of interest, relating

atomistic properties to macroscopic ones and eventually

extracting universal relations. This approach has been

successful in many non-dissipative closed systems [42].

As can be deduced from the previous section, the

self-affinity of the height difference correlation

ChðDt; qÞ / tqH holds over a wide range of time scales,

and similar scale invariant behavior has been obtained
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in macroscopic experiments. Such relation implies that

the simulated dislocation system is near the critical

states. If we conjecture a more general scaling relation

for both temporal and spatial quantities such as

f ðar; p; bt; qÞ / apJðpÞbqKðqÞf ðr; p; t; qÞ, the fractal behav-

ior obtained in macroscopic experiments can be ex-

trapolated into smaller time scales as well as shorter

spatial scale, providing guidance to generic constitutive

laws in continuum plasticity. Obviously, comprehensive

study spanning microscopic to macroscopic plasticity is

needed to confirm the scaling hypothesis.
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Appendix A

The eigensystem of the cyclic matrix T in Eq. (5a) is

determined below. We define Ej as the n� n unit matrix,

and S as the NM � NM cyclic matrix, S ¼ 0 1

ENM�1 0

� �
.

According to such transitional cyclic character of the

matrix S that

S2 ¼
0 E2

ENM�2 0

 !
;

S3 ¼
0 E3

ENM�3 0

 !
; . . . ; SNM�1 ¼

0 ENM�1

E1 0

 !

ðA:1Þ

one finds the matrix T in the form of a polynomial of S
as

T ¼ f ðSÞ ¼
XM�1

m¼0

pmSm: ðA:2Þ

The secular equation for S is kNM � 1 ¼ 0 and the ei-

genvalue k is obtained as

k ¼ 1n; ðA:3Þ

where 1 ¼ expð2pi=MNÞ and (06 n6NM � 1).

The corresponding eigenvectors are

Vn ¼ 1nðNM�1Þ1ðn�1ÞðNM�1Þ � � � 12n1n1
	 
t

: ðA:4Þ

Then the unitary matrix of T is given as

U ¼ ðNMÞ�1=2ðV0V1 � � � VNM�1Þ: ðA:5Þ
Since S and T are commutable, T can be diagonalized by

the unitary matrix U of S. Defining the diagonal matrix

as

D ¼ UþSU ¼ diag 1; 1; 12; . . . ; 1NM�1
� �

ðA:6Þ

similarly, T can be diagonalized as

UþTU ¼ Uþf ðSÞU ¼
XM�1

m¼0

pmDm

¼ diag f ð1Þ; f ð1Þ; f ð12Þ; . . . ; f ð1NM�1Þ
� �

: ðA:7Þ

Finally, a matrix element of T N can be obtained as

T N
qþ1;1 ¼ UðUþTUÞNUþ
 �

qþ1;1
¼ ðNMÞ�1

XNM�1

n¼0

f ð1nÞN1�nq:

ðA:8Þ
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